Oriented coloring of triangle-free planar graphs and 2-outerplanar graphs

نویسندگان

  • Pascal Ochem
  • Alexandre Pinlou
چکیده

A graph is planar if it can be embedded on the plane without edge-crossing. A graph is 2-outerplanar if it has a planar embedding such that the subgraph obtained by removing the vertices of the external face is outerplanar (i.e. with all its vertices on the external face). An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented graph H of order k. We prove that every oriented triangle-free planar graph has an oriented chromatic number at most 40, that improves the previous known bound of 47 due to Borodin and Ivanova [Borodin, O. V. and Ivanova, A. O., An oriented colouring of planar graphs with girth at least 4, Sib. Electron. Math. Reports, vol. 2, 239-249, 2005]. We also prove that every oriented 2-outerplanar graph has an oriented chromatic number at most 40, that improves the previous known bound of 67 due to Esperet and Ochem [Esperet, L. and Ochem, P. Oriented colouring of 2-outerplanar graphs, Inform. Process. Lett., vol. 101(5), 215-219, 2005].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defective List Colorings of Planar Graphs

We combine the concepts of list colorings of graphs with the concept of defective colorings of graphs and introduce the concept of defective list colorings. We apply these concepts to vertex colorings of various classes of planar graphs. A defective coloring with defect d is a coloring of the vertices such that each color class corresponds to an induced subgraph with maximum degree at most d. A...

متن کامل

Weak Unit Disk and Interval Representation of Graphs

We study a variant of intersection representations with unit balls: unit disks in the plane and unit intervals on the line. Given a planar graph and a bipartition of the edges of the graph into near and far edges, the goal is to represent the vertices of the graph by unit-size balls so that the balls for two adjacent vertices intersect if and only if the corresponding edge is near. We consider ...

متن کامل

Three Colors Suffice: Conflict-Free Coloring of Planar Graphs

A conflict-free k-coloring of a graph assigns one of k different colors to some of the vertices such that, for every vertex v, there is a color that is assigned to exactly one vertex among v and v’s neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well-studied in graph theory. Here we study the natural problem of the conflict-free chromatic num...

متن کامل

Subcolorings and the subchromatic number of a graph

We consider the subchromatic number χS(G) of graph G, which is the minimum order of all partitions of V (G) with the property that each class in the partition induces a disjoint union of cliques. Here we establish several bounds on subchromatic number. For example, we consider the maximum subchromatic number of all graphs of order n and in so doing answer a question posed in [20]. We also consi...

متن کامل

Outerplanar and planar oriented cliques

The clique number of an undirected graphG is the maximum order of a complete subgraph of G and is a well-known lower bound for the chromatic number ofG. Every proper k-coloring of G may be viewed as a homomorphism (an edge-preserving vertex mapping) of G to the complete graph of order k. By considering homomorphisms of oriented graphs (digraphs without cycles of length at most 2), we get a natu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011